翻訳と辞書
Words near each other
・ Gaussian process emulator
・ Gaussian q-distribution
・ Gaussian quadrature
・ Gaussian quantum Monte Carlo
・ Gaussian random field
・ Gaussian rational
・ Gaussian surface
・ Gaussian units
・ Gaussian year
・ Gaussig House
・ Gaussiran Glacier
・ Gausson
・ Gausson (physics)
・ Gauss–Boaga projection
・ Gauss–Bonnet gravity
Gauss–Bonnet theorem
・ Gauss–Codazzi equations
・ Gauss–Hermite quadrature
・ Gauss–Jacobi quadrature
・ Gauss–Kronrod quadrature formula
・ Gauss–Krüger coordinate system
・ Gauss–Kuzmin distribution
・ Gauss–Kuzmin–Wirsing operator
・ Gauss–Laguerre quadrature
・ Gauss–Legendre algorithm
・ Gauss–Legendre method
・ Gauss–Lucas theorem
・ Gauss–Manin connection
・ Gauss–Markov
・ Gauss–Markov process


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss–Bonnet theorem : ウィキペディア英語版
Gauss–Bonnet theorem

The Gauss–Bonnet theorem or Gauss–Bonnet formula in differential geometry is an important statement about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic). It is named after Carl Friedrich Gauss who was aware of a version of the theorem but never published it, and Pierre Ossian Bonnet who published a special case in 1848.
== Statement of the theorem ==
Suppose M is a compact two-dimensional Riemannian manifold with boundary \partial M. Let K be the Gaussian curvature of M, and let k_g be the geodesic curvature of \partial M. Then
:\int_M K\;dA+\int_k_g\;ds=2\pi\chi(M), \,
where ''dA'' is the element of area of the surface, and ''ds'' is the line element along the boundary of ''M''. Here, \chi(M) is the Euler characteristic of M.
If the boundary \partial M is piecewise smooth, then we interpret the integral \int_k_g\;ds as the sum of the corresponding integrals along the smooth portions of the boundary, plus the sum of the angles by which the smooth portions turn at the corners of the boundary.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Bonnet theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.